Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559037

RESUMO

The thymus, a central primary lymphoid organ of the immune system, plays a key role in T cell development. Surprisingly, the thymus is quite neglected with regards to standardized pathology approaches and practices for assessing structure and function. Most studies use multispectral flow cytometry to define the dynamic composition of the thymus at the cell population level, but they are limited by lack of contextual insight. This knowledge gap hinders our understanding of various thymic conditions and pathologies, particularly how they affect thymic architecture, and subsequently, immune competence. Here, we introduce a digital pathology pipeline to address these challenges. Our approach can be coupled to analytical algorithms and utilizes rationalized morphometric assessments of thymic tissue, ranging from tissue-wide down to microanatomical and ultrastructural levels. This pipeline enables the quantitative assessment of putative changes and adaptations of thymic structure to stimuli, offering valuable insights into the pathophysiology of thymic disorders. This versatile pipeline can be applied to a wide range of conditions that may directly or indirectly affect thymic structure, ranging from various cytotoxic stimuli inducing acute thymic involution to autoimmune diseases, such as myasthenia gravis. Here, we demonstrate applicability of the method in a mouse model of age-dependent thymic involution, both by confirming established knowledge, and by providing novel insights on intrathymic remodeling in the aged thymus. Our orthogonal pipeline, with its high versatility and depth of analysis, promises to be a valuable and practical toolset for both basic and translational immunology laboratories investigating thymic function and disease.

2.
Int J Cancer ; 154(6): 1097-1110, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38095490

RESUMO

Gastrointestinal bacteria are known to have an impact on local and systemic immunity, and consequently either promote or suppress cancer development. Following the notion that perinatal bacterial exposure might confer immune system competency for life, we investigated whether early-life administration of cholera-toxin (CT), a protein exotoxin of the small intestine pathogenic bacterium Vibrio cholerae, may shape local and systemic immunity to impart a protective effect against tumor development in epithelia distantly located from the gut. For that, newborn mice were orally treated with low non-pathogenic doses of CT and later challenged with the carcinogen 7,12-dimethylbenzanthracene (DMBA), known to cause mainly mammary, but also skin, lung and stomach cancer. Our results revealed that CT suppressed the overall incidence and multiplicity of tumors, with varying efficiencies among cancer types, and promoted survival. Harvesting mouse tissues at an earlier time-point (105 instead of 294 days), showed that CT does not prevent preneoplastic lesions per se but it rather hinders their evolution into tumors. CT pretreatment universally increased apoptosis in the cancer-prone mammary, lung and nonglandular stomach, and altered the expression of several cancer-related molecules. Moreover, CT had a long-term effect on immune system cells and factors, the most prominent being the systemic neutrophil decrease. Finally, CT treatment significantly affected gut bacterial flora composition, leading among others to a major shift from Clostridia to Bacilli class abundance. Overall, these results support the notion that early-life CT consumption is able to affect host's immune, microbiome and gene expression profiles toward the prevention of cancer.


Assuntos
Neoplasias , Vibrio cholerae , Animais , Camundongos , Toxina da Cólera , Desmame , Carcinogênese/induzido quimicamente
3.
Semin Cancer Biol ; 93: 3-19, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37088128

RESUMO

Declining thymic functions associated either with old age (i.e., age-related thymic involution), or with acute involution as a result of stress, infectious disease, or cytoreductive therapies (e.g., chemotherapy/radiotherapy), have been associated with cancer development. A key mechanism underlying such increased cancer risk is the thymus-dependent debilitation of adaptive immunity, which is responsible for orchestrating immunoediting mechanisms and tumor immune surveillance. In the past few years, a blooming set of evidence has intriguingly linked obesity with cancer development and progression. The majority of such studies has focused on obesity-driven chronic inflammation, steroid/sex hormone and adipokine production, and hyperinsulinemia, as principal factors affecting the tumor microenvironment and driving the development of primary malignancy. However, experimental observations about the negative impact of obesity on T cell development and maturation have existed for more than half a century. Here, we critically discuss the molecular and cellular mechanisms of obesity-driven thymic involution as a previously underrepresented intermediary pathology leading to cancer development and progression. This knowledge could be especially relevant in the context of childhood obesity, because impaired thymic function in young individuals leads to immune system abnormalities, and predisposes to various pediatric cancers. A thorough understanding behind the molecular and cellular circuitries governing obesity-induced thymic involution could therefore help towards the rationalized development of targeted thymic regeneration strategies for obese individuals at high risk of cancer development.


Assuntos
Neoplasias , Obesidade Infantil , Humanos , Criança , Obesidade Infantil/patologia , Timo/patologia , Diferenciação Celular , Neoplasias/etiologia , Neoplasias/patologia
4.
Animals (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36670730

RESUMO

The impact of dietary inclusion of Spirulina platensis on the immune system, intestinal microbiome and skin of mink was investigated. Forty-eight animals were equally separated into four groups. Groups B and D were control animals, while groups A and C had their feed supplemented daily with 100 mg/kg of body weight Spirulina. Mink in groups A and B were descended from dams supplemented with spirulina during their reproductive period, while those in groups C and D were descended from dams fed the control diets. Fur growth rate and quality were graded semi-quantitatively. Fecal microbiome analysis, skin thickness histomorphometry, immunohistochemical labeling and counts of immune cells in the colon, mesenteric lymph nodes and spleen and quantitative gene expression analysis of cytokines in the colon were performed. Skin thickness, fur growth rate and skin quality were similar among groups (p > 0.05). However, differences were observed among groups concerning the relative and differential abundance of bacterial species. Tgf-ß expression was lower in group A, whereas IL-ß1 was lower in group C compared to group B (p < 0.05). Group D had significantly lower numbers of inflammatory cells in the colon and mesenteric lymph nodes. The results revealed that Spirulina decreased indices of subclinical inflammation in mink gut, while differences in the bacterial communities among groups were observed.

5.
Front Immunol ; 13: 933547, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844592

RESUMO

Epidemiologic data suggest that cancer survivors tend to develop a protuberant number of adverse late effects, including second primary malignancies (SPM), as a result of cytotoxic chemotherapy. Besides the genotoxic potential of these drugs that directly inflict mutational burden on genomic DNA, the precise mechanisms contributing to SPM development are poorly understood. Cancer is nowadays perceived as a complex process that goes beyond the concept of genetic disease and includes tumor cell interactions with complex stromal and immune cell microenvironments. The cancer immunoediting theory offers an explanation for the development of nascent neoplastic cells. Briefly, the theory suggests that newly emerging tumor cells are mostly eliminated by an effective tissue immunosurveillance, but certain tumor variants may occasionally escape innate and adaptive mechanisms of immunological destruction, entering an equilibrium phase, where immunologic tumor cell death "equals" new tumor cell birth. Subsequent microenvironmental pressures and accumulation of helpful mutations in certain variants may lead to escape from the equilibrium phase, and eventually cause an overt neoplasm. Cancer immunoediting functions as a dedicated sentinel under the auspice of a highly competent immune system. This perspective offers the fresh insight that chemotherapy-induced thymic involution, which is characterized by the extensive obliteration of the sensitive thymic epithelial cell (TEC) compartment, can cause long-term defects in thymopoiesis and in establishment of diverse T cell receptor repertoires and peripheral T cell pools of cancer survivors. Such delayed recovery of T cell adaptive immunity may result in prolonged hijacking of the cancer immunoediting mechanisms, and lead to development of persistent and mortal infections, inflammatory disorders, organ-specific autoimmunity lesions, and SPMs. Acknowledging that chemotherapy-induced thymic involution is a potential risk factor for the emergence of SPM demarcates new avenues for the rationalized development of pharmacologic interventions to promote thymic regeneration in patients receiving cytoreductive chemotherapies.


Assuntos
Antineoplásicos , Doenças Linfáticas , Neoplasias , Antineoplásicos/efeitos adversos , Células Epiteliais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Linfócitos T , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA